I will build scalable MLOps workflows and deploy your models in cloud environments with proper CI/CD, monitoring, and versioning.
Tech Stack:
• Cloud: AWS (S3, Lambda, EC2), Azure ML, GCP AI Platform
• Pipelines: MLflow, DVC, Airflow, Prefect
• Containers: Docker, Kubernetes, Helm
• APIs: FastAPI, Flask
• CI/CD: GitHub Actions, GitLab CI, Terraform
• Monitoring: Prometheus, Grafana, ELK stack
• Model Registry: MLflow, SageMaker
Deliverables:
• End-to-end ML pipeline (data → train → deploy)
• Model registry + artifact tracking
• Dockerized model + infrastructure-as-code
• API deployment to cloud instance
• Real-time metrics & logging
• Optional GPU setup or autoscaling configuration